CZAP-E 70-1648







HIGH-PRESSURE GAUGES WITH ELECTRIC SENSORS

by

E.CZAPUTOWICZ, J.JANKOWSKI, M.ŁAPIŃSKI, R.WIŚNIEWSKI W.WŁODARSKI

#### Poland

### Basic Parameters of a Secondary High-pressure Sensor

If  $\mathcal{X}$  is the given physical property, the basic parameters of the secondary high-pressure sensor are [1]:

 $\begin{aligned} & \mathcal{L}_{\mathcal{H}} = \left[ \frac{\partial \mathcal{X}}{\partial \mathcal{H}_{O}} \frac{\partial \mathcal{P}}{\partial \mathcal{P}} \right]_{\mathrm{T}} & - \text{ pressure sensitivity coefficient;} \\ & \int_{\mathcal{H}} \frac{\partial \mathcal{P}}{\partial \mathcal{H}_{O}} \frac{\partial \mathcal{P}}{\partial \mathcal{P}} \right]_{\mathrm{P}} & - \text{ temperature sensitivity coefficient;} \\ & \int_{\mathcal{H}} \frac{\partial \mathcal{P}}{\partial \mathcal{H}_{O}} \frac{\partial \mathcal{P}}{\partial \mathcal{P}} \right]_{\mathcal{H}} & - \text{ temperature coefficient of the pressure reading shift;} \end{aligned}$ 

 $z_{\chi} = \mathcal{L}_{\chi} / \mathcal{J}_{\chi} = \mathcal{L}_{\chi}^{2} / \mathcal{J}_{\chi}$  - coefficient of pressure quality. The last coefficient, introduced by Czaputowicz [2] seems to be the best indicator of the suitability of a given physical property of a sensor for high-pressure measurements. It is important that the absolute value of the coefficient of pressure quality  $|z_{\chi}|$  be possibly high. In the present paper only electric properties will be discussed. All values of pressure are given in atmospheres, where:

1 atm = 1 kg/cm<sup>2</sup> = 0.0980665 MN/m<sup>2</sup>

### High-pressure Resistance Gauges with Metal Sensors

The manganin sensor is one of the most populare resistance metal sensors for measurements of high pressures [3]. The relative change of electric resistivity with increasing pressure and temperature for Russian and German manganin is diagramatically presented in Fig.1

In the range up to 6000 atm  $\propto = \left[ \partial R/(R_0 \partial P) \right]_T$  decreases linearly with the growing pressure:

$$\alpha c_{\rm P} = \alpha c_{\rm O} + \alpha c_{\rm O} \cdot P \tag{1}$$

where  $\ll_{o}$  dependes on the kind of wire, its diameter, and heat treatment [2]. At room temperatures we have:

- 1 -

PO-297

 $\alpha_0 = (2.0 - 2.6) \times 10^{-6} \text{ atm}^{-1}$  $\alpha_1 \approx -5 \times 10^{-12} \text{ atm}^{-2}$ 

For two kinds of wire  $\mathcal{L}_0$  increases with growing temperature (cf. Fig.1) where

$$\delta = [\partial \alpha_0 / (\alpha_0 \partial T)]_P = 1 \times 10^3 \text{ deg}^{-1}$$

but  $c_1 \approx \text{const.}$  in the range 15 to 30°C.

In the range 6000 to 16,000 atm.  $c_P$  also decreases linearly with growing pressure (Fig.2) but at a rate about half that observed up to 6000 atm. The relative variations of resistivity with growing temperature are given for all manganin wires by the following parabolic function [3]:

$$\Delta R/R_{20} = at^2 + bt + c \qquad (2)$$

where a,b,c depend on the kind of wire, heat treatment and the range of pressures (Table 1).

Czaputowicz constructed a new kind of manganin sensor consisting of two kinds of wire, Russian and German, connected in series. In this sensor  $\beta = \left[\frac{\partial R}{(R_o \partial T)}\right]_P$  is about ten times less than in the standard Russian, English or German manganin wires in the temperature range 17 to 27°C and the maximum error in the pressure reading due to temperature variation is only 2 atm. It allows for measuring both relatively small pressures (up to 1000 atm) and dynamic pressures [4].

High-pressure Resistance Gauges with Semiconductor Sensors The application of pure (non-doped) semiconductor crystals of Te and InSb as high-pressure sensors was discussed by the present authors at the IMEKO-IV Conference [1]. However, since in practice all semiconductor materials are contaminated, it seems justified to express the basic parameters of the semiconductor resistive sensor by the value of the effective energy gap  $E^{\pm}$  and the effective energy gap pressure coefficient  $a^{\pm} = (\partial E^{\pm}/\partial P)_{\mp}$  which fulfil the equation:

 $R/R_{o} = \exp \left(E^{H} - a^{H}P\right)/(2kT)$ (3)

- 2 -

PO-297

In the first approximation we have:

 $\alpha = a^{\frac{3\pi}{2}}/2kT \qquad \qquad \beta = -E^{\frac{3\pi}{2}}/2kT^{2}$  $\gamma = -E^{\frac{3\pi}{2}}/a^{\frac{3\pi}{2}}T \qquad \qquad z = -a^{\frac{3\pi}{2}}/2kE^{\frac{3\pi}{2}}$ 

For Te and InSb we have the averaged values:

| ETe = | 0•25eV   | and = .               | - | 1.8 | x | 10-5eV/atz |
|-------|----------|-----------------------|---|-----|---|------------|
| EInSb | = 0°18eV | a <sup>¥</sup> InSb : | - | 1.5 | x | 10-5eV/ata |

The basic parameters for these crystals are listed in Table 2. Some selected, experimental results for Te are given in Fig.3. The most important disadvantage of the gauge with a single semiconductor crystal is its temperature dependence; greatest difficulties are caused by temperature variations due to pressure changes. Two of the present authors [5] reduced considerably the effect of temperature on the accuracy of the readings by connecting Te and InSb crystals in the neighbouring branches of a Wheatstone bridge (Table 2, item 6). Very recently Czaputowicz found that Te monocrystals can be prepared whose resistivity in the range 10 to 50°C is a parabolic function of temperature (cf. Eq.2). Since the maximum of the function is at 30°C, we obtain a new practical possibility of temperature compensation (cf. Tables 1 and item 7).

# On the Possibilities of Applying Planar Transistors as High-pressure Gauges.

The effects of hydrostatic pressure on the p-n junction where measured [6-8]. Whodarski examined some properties of a silicon n-p-n planar transistor (OE, OB connections). From the experimental data two groupes of results were selected:  $I_c = f(P,T)$  where:  $V_{CE} = const.$ ,  $V_{RE} = const.$ , for which |z| = max, and  $V_{RE} = f(P,T)$  where:  $V_{CE} = const.$ ,  $I_C = const.$ , for which |z| = min. The largest variation in the collector current for a given pressure system is observed for the common emitter mode of operation of the transistor. Any change in the base current due to the application of pressure is multiplied by the

- 3 -

multiplication current factor of the transistor. Some experimental data are presented in Figs. 4,5,6 and 7, and the basic parameters in Table 2. Silicon has high values of  $\mathbb{E}^{\mathbb{H}}$ ,  $\left|\beta_{R}\right|$ ,  $\left|\widetilde{\sigma}_{R}\right|$  where: R - resistivity and also shows a relatively high melting point. This is why silicon planar transistors may be used for measuring high pressures at elevated temperatures.

The comparison of the coefficients of pressure quality for all the examined electric sensors is presented in Table 2 and Fig.8. Further studies on the application of metals and semiconductors as electric high-pressure sensors are in progress.

### References

- Lapiński, M., Czaputowicz, E., Włodarski, W., Karwowski, M., Acta Imeko IV, FO-137, p. 93.
- [2] Czaputowicz, E., Thesis, Warsaw Technical University, 1967
- [3] Czaputowicz, E., Jankowski, J., Materiały III Krajowej Narady Techniki Wysokich Ciśnień, Warszawa 1969 (Proceedings of the 3rd National Conference on Highpressure Technique, Warsaw, 1969).
- [4] Wiśniewski, R., as in 3
- [5] Czaputowicz, E., Włodarski, W., Patent PRL No 55669.
- [6] Hall, H.H., Bardeen, I., Pearson, G.I., Phys. Rev. 84, 1, 129, 1951.
- [7] Jayaraman, A., Sikorski, M.E., Irvin, I.C., Yates, G.H.,
  J. Appl. Phys. 38, 11, 4454, 1967
- [5] Mason, W.P., Physical Acoustics Principles and Methods, v.I, Methods- and Devices. Part B, Academic Press, New York, - London, 1961.

### Figure Captions

- Fig.1. Pressure and temperature variation of relative resistivity for Russian (1) and German (2) manganin
- Fig.2. Pressure variation of the relative changes of the pressure sensitivity coefficient for Russian manganin sensors (1,2,3)
- Fig.3. Pressure variation of resistivity for two tellurium monocrystals  $1,2 - a^{\pm} = 1.75 \times 10^{-5} \text{ eV/atm}$  (R<sub>o</sub> = 19,6 ohm)  $3,4 - a^{\pm} = 1.48 \times 10^{-5} \text{ eV/atm}$  (R<sub>o</sub> = 6,5 ohm)
- Fig.4.  $I_c = f(V_c)$  as a function of pressure and temperature for a planar transistor (OE connection)  $1 - P_{atm}$ ,  $20^{\circ}C$ ;  $2 - P_{atm}$ ,  $22^{\circ}C$ ; 3 - 4000 atm,  $20^{\circ}C$ ;  $4 - P_{atm}$ ,  $24^{\circ}C$ ; 5 - 4000 atm,  $22^{\circ}C$ ;  $6 - P_{atm}$ ,  $26^{\circ}C$ ; 7 - 4000 atm,  $24^{\circ}C$ ; 8 - 4000 atm,  $26^{\circ}C$ .
- Fig.5. The relative changes of  $V_{\rm RE}$  as a function of pressure for a planar transistor (OE connection) 1,2,3 - transistor 12;  $I_{\bar{B}}$ : 30, 20, 10 µA 4,5,6 - transistor 13;  $I_{\bar{B}}$ : 30, 20, 10 µA 7,8,9 - transistor 12;  $I_{\bar{C}}$ : 2 mA, 500 µA, 100 µA.
- Fig.6.  $I_{C} = f(U_{BE})$  for a planar transistor (OE connection) 1 - atmospheric pressure; 2 - 6000 atm
- Fig.7. The relative changes of U<sub>RE</sub> as a function of temperature for a planar transistor (OE connection) 1,2,3, - I<sub>C</sub> = 2 mA; P: atmospheric, 2500 atm, 5000 atm 4,5,6 - I<sub>C</sub> = 500 µA; P: atmospheric, 2500 atm, 5000 atm
- Fig.8. Coefficient of pressure quality for electric sensors 1,2,3 - manganin sensors (item 1,2 and 3 in Table 2) 4,5,6,7 - Te, InSb sensors (item 4,5,6 and 7 in Table 2) 10, 11 - planar transistor sensor (item 10 and 11 in Table 2).

- 5 -

## Table 1.

Values of Coefficients a,b,c in Eq.2 (in the temperature range  $0 - 50^{\circ}C$ )

|     | Electric Sensor                                            | a<br>10 <sup>-7</sup><br>16g <sup>-2</sup> ] | b<br>x 10 <sup>-5</sup><br>[deg <sup>-1</sup> ] | x 10 <sup>-4</sup> | $\left(\frac{\Delta R}{R_o}\right)_{max}$<br>x 10 <sup>-5</sup> | t <sub>max</sub><br>[deg] |
|-----|------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--------------------|-----------------------------------------------------------------|---------------------------|
| 1   | German manganin<br>at atmospheric<br>pressure <sup>†</sup> | -4.1                                         | 1•26                                            | -0.88              | 0•88                                                            | 15•4                      |
| 2   | German manganin<br>at 6000 atm                             | -3.57                                        | 1.82                                            | -2.2               | 1-07                                                            | 25.5                      |
| 3   | Russian manganin<br>before heat<br>treatment               | -6•2                                         | 3.5                                             | -4.5               | 4•25                                                            | 28•2                      |
| 4 · | Russian manganin<br>after heat<br>treatment                | -4.65                                        | 2•38                                            | -2.91              | 1•42                                                            | 25•6                      |
| 5   | Russian manganin<br>as in (4) at 3000<br>atm and 6000 atm  | -4.1                                         | 3•11                                            | -4.58              | 12•8                                                            | 37.8                      |
| 6   | German-Russian<br>manganin sensor‡                         | -4.35                                        | 1.82                                            | -1.89              | 0.06                                                            | 21.0                      |
| 7   | Te*<br>(selected crystal)                                  | ) -540                                       | 350                                             | -490               | 770                                                             | 32.4                      |
| 8   | InSb*<br>(selected crystal)                                | ) 0                                          | -0.085                                          | 1700               | -                                                               | -                         |
| 9   | Te + InSb**                                                | -500                                         | 260                                             | -330               | 126                                                             | 26.0                      |

<sup>+</sup>Before and after heat treatment.

Sensor constructed by Czaputowicz by connecting German and Russian manganin (as in items (2) and (4)).

\*In the temperature range 15 - 30°C.

\*\* Monocrystals Te ( $R_{Te} \approx 12.5$  ohm) and InSb ( $R_{InSb} \approx 1$  ohm) connected in series.

# Table 2.

Basic Parameters of Electric Sensors for High-pressure Measurements

(averaged values in the temperature range 15-25°C and in the pressure range up to 2000 atm)

| Electric<br>Sensor                            | H                                                                                                                                                                                                                                                                                                                                                                                                                     | atm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                    | x 10 <sup>-5</sup><br>[deg <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tre<br>[atm.deg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z R<br>1] [deg·atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2]                                                  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| German manganin                               | RG                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| Russian manganin <sup>†</sup>                 | RR                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| German-Russian<br>manganin†                   | R1+2                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0=44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| Te                                            | RTe                                                                                                                                                                                                                                                                                                                                                                                                                   | -360                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| InSb                                          | RINSD                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| Te(4) - InSb(5)*                              | R                                                                                                                                                                                                                                                                                                                                                                                                                     | -330                                                                                                                                                                                                                                                                                                                                                                                                                                 | -250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| Te (selected crystal)                         | ) R <sub>Te</sub>                                                                                                                                                                                                                                                                                                                                                                                                     | -100                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| InSb<br>(selected crystal)                    | RINS                                                                                                                                                                                                                                                                                                                                                                                                                  | b 200                                                                                                                                                                                                                                                                                                                                                                                                                                | -900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| Te(7) + InSb(8)**                             | R7+8                                                                                                                                                                                                                                                                                                                                                                                                                  | -100                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| Planar transistor<br>U <sub>CE</sub> = const. |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| U <sub>EE</sub> = const.                      | Ic                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| Planar transistor<br>U <sub>CE</sub> = const. |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| I <sub>c</sub> = const.                       | URE                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                  | -240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
|                                               | Electric<br>Sensor<br>German manganin<br>Russian manganin <sup>†</sup><br>German-Russian<br>manganin <sup>†</sup><br>Te<br>InSb<br>Te(4) - InSb(5) <sup>*</sup><br>(selected crystal)<br>(selected crystal)<br>(selected crystal)<br>Te(7) + InSb(8) <sup>**</sup><br>Planar transistor<br>U <sub>CE</sub> = const.<br>Planar transistor<br>U <sub>CE</sub> = const.<br>Planar transistor<br>U <sub>CE</sub> = const. | Electric<br>Sensor $\mathcal{H}$ German manganin $R_G$ Russian manganin <sup>†</sup> $R_H$ German-Russian<br>manganin <sup>†</sup> $R_{1+2}$ Te $R_{1-2}$ Te $R_{1-2}$ Te $R_{1-2}$ Te $R_{1-2}$ Te $R_{1-2}$ Te $R_{1-2}$ InSb $R_{1-2}$ Te(4) - InSb(5)* $R$ (selected crystal) $R_{1-2}$ (selected crystal) $R_{1-2}$ Te(7) + InSb(8)** $R_{7+8}$ Planar transistor<br>UCE = const. $I_C$ Planar transistor<br>UCE = const. $I_C$ | Electric<br>Sensor $\mathcal{X}$ $x \stackrel{10^{-6}}{x^{-1}}$<br>German manganin $R_{g}$ 2.1<br>Russian manganin $R_{g}$ 2.4<br>German-Russian $R_{1+2}$ 2.25<br>Te $R_{1+2}$ 2.20<br>Te $(4) - 1nSb(5)^{*}$ R $-330$<br>Te $(7) + 1nSb(5)^{*}$ R $-330$<br>Te $(7) + 1nSb(8)^{**}$ $R_{7+8}$ $-100$<br>Planar transistor<br>$U_{CE} = const.$ $I_{c}$ $67$<br>Planar transistor<br>$U_{CE} = const.$ $I_{c}$ $2.3$ | Electric<br>Sensor $\mathcal{H} = \frac{1}{2} \frac{1}$ | Electric<br>Sensor $2L$ $x 10^{-6}$ $x 10^{-5}$ $atm \cdot deg^{-1}$<br>$deg^{-1}$ $deg^{-1}$ $atm \cdot deg^{-1}$<br>Russian manganin $R_{c}$ 2·1 -0·4 -1·9<br>Russian manganin $R_{R}$ 2·4 0·5 2·08<br>German-Russian $R_{1+2}$ 2·25 0·1 0·44<br>Te $R_{Te}$ -360 -1700 47<br>InSb $R_{TnSb}$ 300 -1200 -40<br>Te(4) - InSb(5)* R -330 -250 7·5<br>(selected crystal) $R_{Te}$ -100 100 -10<br>$InSb$ (selected crystal) $R_{Te}$ -100 100 -45<br>Te(7) + InSb(8)** $R_{7+8}$ -100 70 -7·0<br>Planar transistor<br>$U_{CE}$ = const. $I_{c}$ 67 7200 1074<br>Planar transistor<br>$U_{CE}$ = const. $U_{HE}$ 2·3 -240 -1043 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

<sup>†</sup>After heat treatment. <sup>\*</sup> In the neighbouring branches of a Wheatstone bridge. <sup>\*\*</sup> As in Table 1, item 9.

- 7 -







P0-297

-8-



P0-297

- 9 -





Printed MTESZ, BUDAPEST - 1259

- 10 -

PO-297